Categories
AI/ML control Locomotion simulation The Sentient Table

ARS and PPO

https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=12553

A couple of advanced data science algorithms. Implemented both for the walking table. ARS is great. We hear a lot about deep learning. This one is shallow learning, and does very well on simpler tasks. Just inputs and outputs, no hidden layers.

It’s similar to the Evolution Strategies algorithm. Generally trying some random stuff out, and slowly changing the model based on what gets you closer to the goal.

ARS: https://arxiv.org/pdf/1803.07055.pdf

Good lecture slides http://eddiesagra.com/wp-content/uploads/2019/03/Introduction-to-Machine-Learning-v1.2-Mar-11-2019.pdf

ARS – Augmented Random Search

https://github.com/colinskow/move37/blob/master/ars/ars.py

https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd

PPO – Proximal Policy Optimization

https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/agents/ppo/algorithm.py